

National Institute of Building Sciences

Provider Number: G168

Leveraging Artificial Intelligence for Structural Design

Course Number

Robert K. Otani, PE Chief Technology Officer | Thornton Tomasetti Date

January 8, 2019

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Thornton Tomasetti has been researching artificial intelligence (AI) and machine learning (ML) since 2015 and believe that the use of AI/ML will radically disrupt the consulting engineering practice.

This course will provide a brief history of Artificial Intelligence and how AI/ML can be leveraged in structural engineering design and beyond.

Learning Objectives

At the end of the this course, participants will be able to:

- 1. Understand the history of Artificial intelligence and its uses
- 2. Understand the typical algorithms used in Artificial Intelligence
- 3. Learn about an automated building design software and how it can be used in practice
- 4. Learn about automated inspection using artificial intelligence

CORE studio | Thornton Tomasetti

Rob Otani Nick Mundell Ben Howes Kenny Tam

Elcin Ertugrul Daniel Segraves Hiram Rodriguez Serena Li

Richard Schmitt Sergey Pigach David Mans Hanshen Sun

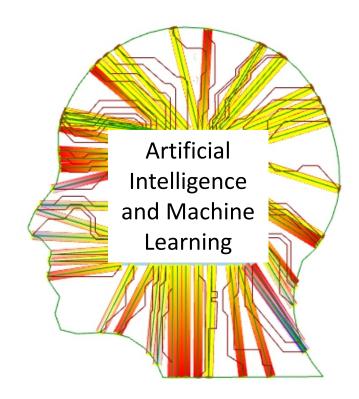
Charlie Portelli Abhishek Bawiskar

What is AI?

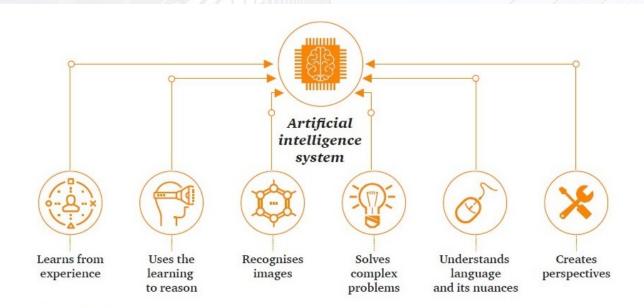
1.1 What is AI?

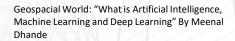
Artificial intelligence refers to the ability of a computer or a computer-enabled robotic system to process information and produce outcomes in a manner similar to the thought process of humans in learning, decision making and solving problems. By extension, the goal of AI systems is to develop systems capable of tacking complex problems in ways similar to human logic and reasoning.

Artificial Intelligence is the science and engineering of making intelligent machines, especially intelligent computer programs.


- John McCarthy, father of AI

Geospacial World: "What is Artificial Intelligence, Machine Learning and Deep Learning" By Meenal Dhande


What is AI?



What is AI?

Why use AI?

 In designing structures, there are many mundane and repetitive tasks that engineers are "overqualified" for. Al can automate those tasks. This allows engineers to spend their time being creative and solving problems.

 Al can also automate QA/QC since it can find "outlier" patterns

Why use AI?

 Al can process millions of data points and therefore can understand patterns in engineering decision

 Al can be learning tool. Al can assist large firms by capturing institutional knowledge from the "experts" in firm and allow that knowledge to be at the fingertips of the younger engineers.

Al at Thornton Tomasetti

2015 Thornton Tomasetti published this research paper outlining the use of Machine Learning for the design of buildings at the 2015 Internation Shell and Spatial Structures symposium

Proceedings of the International Association for Shell and Spatial Structures (IASS)
Symposium 2015, Amsterdam
Future Visions
17 - 20 August 2015, Amsterdam, The Netherlands

Performance Measures from Architectural Massing Using Machine Learning

Dan REYNOLDS*, Katy GHANTOUS, PhDa, Robert K. OTANI, PEb,

*Thornton Tomasetti, Inc. 51 Madison Avenue DRevnolds@ThorntonTomasetti.com

^a Ecole Polytechnique, UPMC, CNRS, Univ. Paris-Sud ^b Thornton Tomasetti, Inc.

Al at Thornton Tomasetti

Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2015, Amsterdam
Future Visions

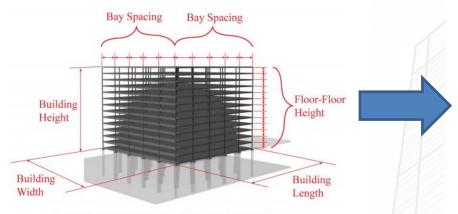


Figure 1: Geometric input parameters for embodied energy calculation.

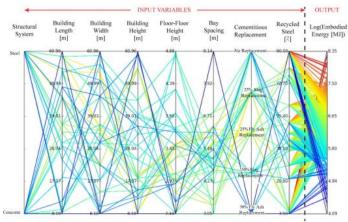


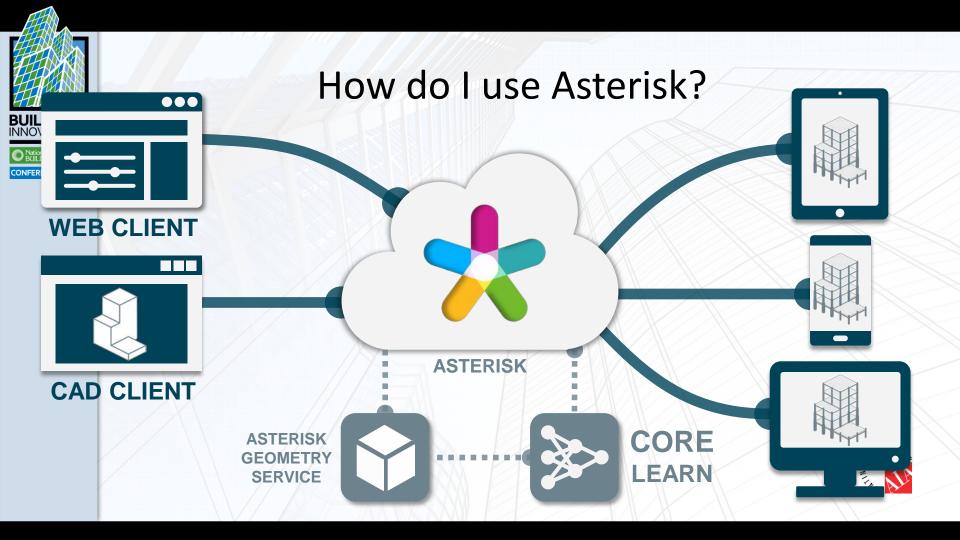
Figure 3: Parallel Coordinate Graph of Building Input Parameters and Total Embodied Energy.

Al and Automation

ASTERISK

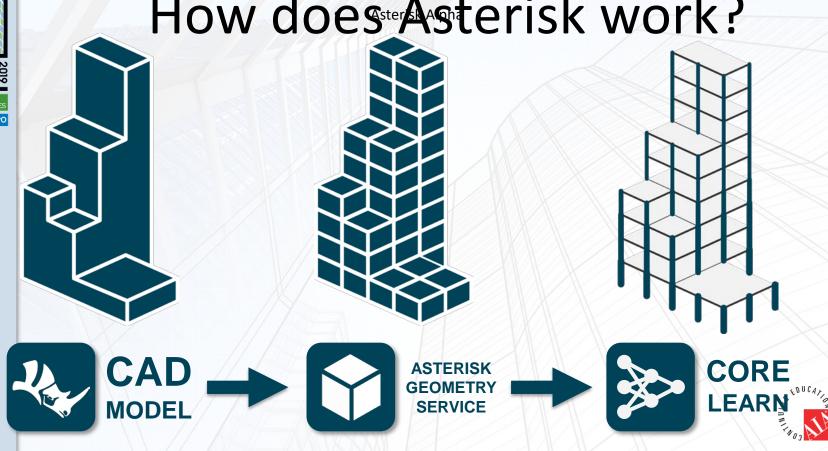
"Asterisk" is a software application developed in CORE studio | Thornton Tomasetti as an ongoing research initiative to leverage Al/Machine Learning.

Asterisk

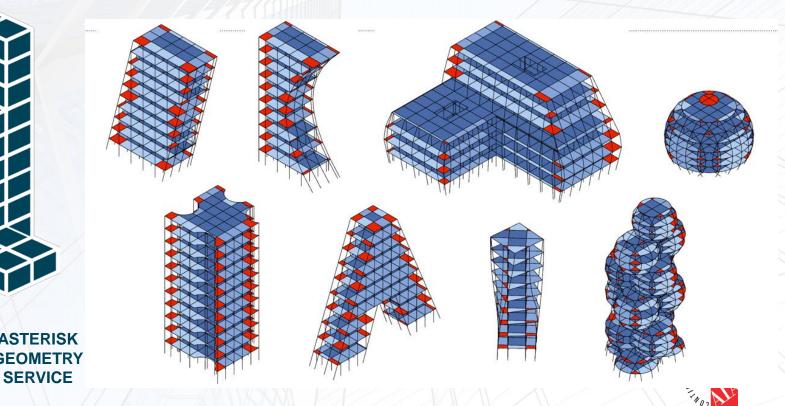

"Asterisk" is an application developed at Thornton Tomasetti that performs a <u>structural design of a building in seconds</u>.

The application uses Thornton Tomasetti past building design data and machine learning algorithms to "predict" structural member sizing for floor framing, columns, slabs, foundations, and core walls for both steel and concrete buildings as well as embodied energy metrics. Only a building massing is necessary.

This speed of design and modeling is not possible otherwise. A single iteration would take a team of engineers a minimum of a week to provide the same level of design.



Asterisk is a web application that enables designers to develop, filter, and compare structural options from an uploaded massing model.



How does Asterisk work?

CONFERENCE & EXPO **ASTERISK GEOMETRY**

How does Asterisk work?

Why should I use Asterisk?

Asterisk Alpha

FAST

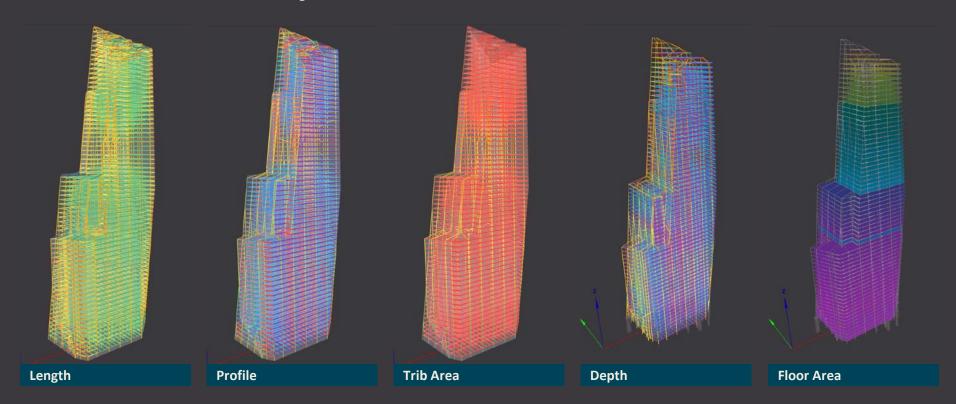
Leveraging machine learning for rapid assessment and delivery of solutions.

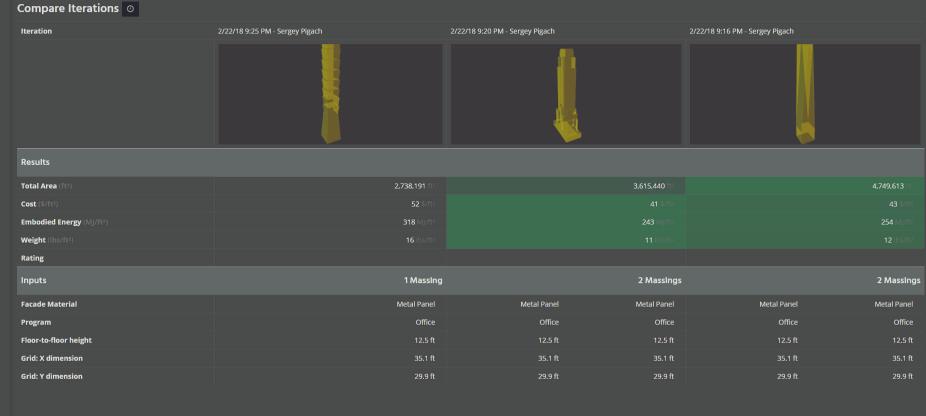
ACCURATE

Built on Thornton Tomasetti's decades of applied industry knowledge

ROBUST

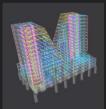
Asterisk provides comprehensive metrics for architects, developers, & engineers.


OPTIONEERING

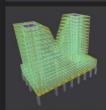

Asterisk is the designers app for structural optioneering

Analysis · Select Analysis Types

Reports


sterisk alpha Iteration Cut Sheet

Project: Handan Mountains Document Created on: 01.10.18 | 5:55 p.m. (-5 gmt)


Option 1: Dual Mountain Scheme

Project		
Program	Office	
Total Height	180 ft	
Total Floors	15	
Flr-Flr	12 ft	
Gross Area	392,862 ft2	
Facade Area	100,256 ft2	

Engineering	
System	Steel
Slabs	Composite Deck
Foundation	Pilings
Core	Steel Braced
Grid: X dimension	30.0 ft
Grid: Y dimension	30.0 ft

Performance	
Cost	42 \$/ft2
Steel Cost	10% (Typical)
Concrete Cost	30
Weight	12 lbs/ft2
Embodied Energy	222 MJ/R2
Complexity	10% (Typical)

Asterisk alpha Iteration Comparison Report Project: Handan Mountains Document Created on: 01.10.181555 pm, (-5 gmt)

Dual Mountain Scheme

	Program	Office			
- 67	Fir-Fir	12.5 ft	·		
	No Floors	15			
	Grid: X dimension	30.0 ft	392,862		
-	Grid: Y dimension	30.0 ft			
Option 1	Facade Material	Metal Panel			

	Program	Office			
A 100	Fir-Fir	11 ft			
	No Floors	17			
	Grid: X dimension	30.0 ft	421,375 46		15
1	Grid: Y dimension	30.0 ft			
Option 2	Facade Material	Metal Panel			

	Program	Office				
MI	Flr-Flr	13.0 ft	353,584 46			
	No Floors	14				
	Grid: X dimension	30.0 ft		46		
1	Grid: Y dimension	30.0 ft				
Option 3	Facade Material	Metal Panel				

Total Area	Cost	Energy	Weight
ft2	\$/112	MJ/ft2	lbs/ft2

Asterisk alpha

Project Comparison Report

Project: Handan Mountains Document Created on: 01.10.1815.55 p.m. (-5 gmt)

Handan Mountain Schemes

Results	Mountains	Book Ends	Iconic Tower
Total Area (ft2)	328,375	392,862	320,873
Cost (\$/ft2)	46		46
Embodied Energy (MJ/ft2)	299		301
Weight (lbs/ft2)	14		14
Rating			

Inputs	1 Massing	3 Massing	1 Massing
Facade Material	Metal Panel	Metal Panel	Metal Panel
Program	Office	Office	Office
Floor-to-floor height	12.5	12.5	12.5
Grid: X dimension	36.1	35.1	35,1
Grid: Y dimension	29.2	29.2	29.2

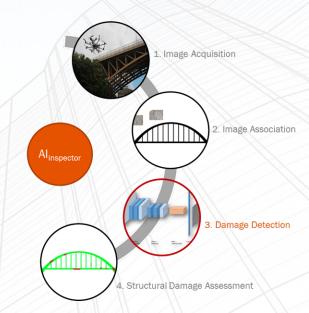
Al and Automation

DAMAGE DETECTOR

"Damage Detector" is an application that process building structural damage to be found and documented by using image recognition AI

What damage can AI detect?

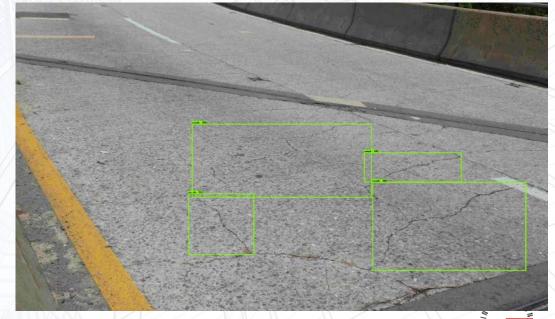
Anything a human inspector can find by visual inspection!


- Cracks, spalls, exposed rebar, (concrete/masonry)
- Moisture ingression, mold, (stucco)
- Corrosion, cracking, buckling (steel)
- Rot (wood) etc. etc.

How does it work?

- Supervised learning of deep convolutional neural nets on lots of labeled images
- Leverages pre-trained models for faster training

How does it work?


 Using just images, types of damage can be found using AI

How does it work?

 We will be able to inspect structures faster, more frequently, and in areas where people may be otherwise at risk.

Future Plans

 Integrate with 3D photogrammetry (via drone-captured imagery) to build a 3D digital twin of inspected structure including damage zones

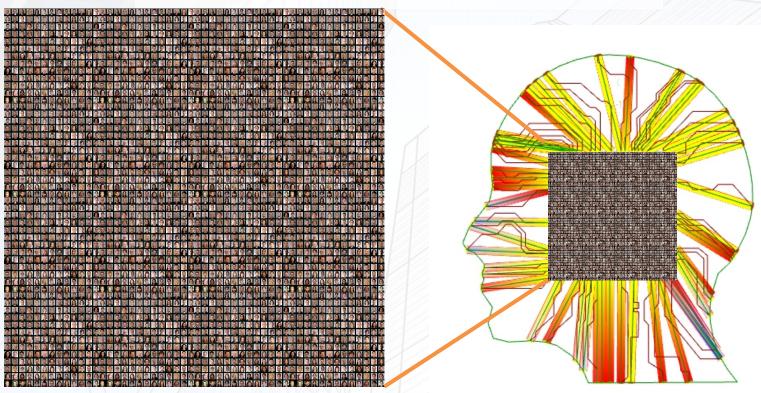


Image courtesy: geocue.com

What if the entirety of your firms' knowledge was accessible in an app?

In Summary

- 20-30% of current engineering workflows can be automated using AI
- Al can increase productivity by automating engineering tasks
- Al can learn to assist checking our work to find errors
- Al can find trends and learn from large data (engineering/financial) sets quickly that can assist engineers to manage projects more efficiently and make key decisions faster
- Al can process domain knowledge of engineering firms and enable knowledge capture from generations of engineers

This concludes The American Institute of Architects
Continuing Education Systems Course

Robert K. Otani

rotani@thorntontomasetti.com

Thornton Tomasetti

