

Building Great Green Things

S409: BIM for Energy Modeling, Lifecycle Energy Usage & Cost Analysis

Sustainable & Smart

Solutions for the Built Environment

Agenda

- Discover how Building Information Models can be used for the purpose of Energy Analysis.
- Hear guidelines for building a model for the purpose of energy analysis, data required for energy analysis
- Lessons learned in exporting BIM to energy analysis software

DPR Fast Facts

RANKINGS

ENR Top 400 Contractors ENR Top Green Contractors #35 **Annual Volume Mid-Atlantic Volume** \$2.3B (2008)\$280M (2008)

RESOURCES

National: **Mid-Atlantic:** 1450 Overall 240 **Overall**

#5

980 Professional **105** Professional

260+ LEED[®] AP 29+ LEED[®] AP

Mission Statement To be **one** of the Most Admired *Companies* by the year 2030.

Core Values

INTEGRITY We conduct all business with the highest standards of honesty and fairness; we can be trusted.

ENJOYMENT We believe work should be fun and intrinsically satisfying; if we are not enjoying ourselves, we are doing something wrong.

UNIQUENESS We must be different from and more progressive than all other construction companies; we stand for something.

EVER FORWARD We believe in continual self-initiated change, improvement, learning and the advancement of standards for their own sake.

Sustainable & Smart ecobuild

Sustainable, Green and High Performance Solutions for the Built Environmen

Ŭ

S409: BIM for Enerav Modelina. Lifecycle Energy Usage & Cost Analvsis

Energy Modeling – What Is It?

Generally, Energy Modeling is the use of software to predict a building's energy usage based on its design parameters. These parameters include building location, orientation, building envelope, HVAC, lighting, and electrical loads.

Energy Analysis

Passive thermal systems (radiant floors, chilled beams, earth tubes)

Natural ventilation

Non Standard HVAC systems (evaporative cooling systems)

Sunshading Devices

Fenestration Geometry

Impact of various building materials

Renewable energy sources

Daylighting levels: LEED Credit

Impact of Site Orientation

Sustainable & Smart

Solutions for the Built Environmen

S409: BIM for Energy Modeling, Lifecycle Energy Usage & Cost Analysis

Energy Analysis

Time Requirement for Complete Analysis

Software-Used

Riuska

- Imports 3D models
- Roche Laboratories

IES Virtual Environment

- Revit-to-IES plugin
- Daylighting credit, comprehensive analysis software
- DPR Sacramento Office, Confidential Client

SketchUp Plug-in

🐒 Set Model Properties 🏼 🏂 VE-Ware 🛛 💫 <VE> Toolkit

IES Revit Plug-in

Sustainable & Smart

AEC-ST fall Science & Technology for Architecture, Engineering & Construction

Software-Trial

- Autodesk Green Building Studios
 - Web based service using GbXML format
 - Conceptual stage analysis
- Ecotect
 - Acquired by Autodesk
 - Revit integration in future
 - Used by architects, designers

College of Nursing and Healthcare Phoenix, AZ

Objectives

1. Optimize roof top PV location

- Effect of shadows of neighboring building, as project site is located in downtown
- Effect of other rooftop elements, especially the screen wall and parapet on rooftop PV's
- 2. Review daylighting on each floor to verify possibility of LEED credit eligibility

CoNHI2 – Sun Shading Analysis for PV location

Architectural Model Created by SmithGroup

CoNHI2 – Daylighting Analysis

Total area (ft²)	14730.268
Total area above threshold (ft²)	3877.495
Percentage	26.3%

LEED NC 2.2 EQ Credit 8.1 daylight and views: FAIL

A pass requires 75% or more of the total area to be over the threshold.

Areas achieving 25 fc threshold

Analysis used Revit model imported into IES

Lessons Learned: Modeling

Revit-gbXML conversion

Plus

- Leverages existing model
- IES plug-in exists

Minus

- Not seamless
- careful modeling/ preprocessing

Best Application

- Standard geometry
- Less detail in model
 - Preliminary analysis Concept/SD stage

ASU CoNHI2, Phoenix, AZ

Sustainable & Smart

Sustainable, Green and High Performance Solutions for the Built Environmen

S409: BIM for Energy Modeling Lifecycle Energy Usage & Cost Analvsis

WE EXIST TO BUILD THINGS

Confidential Client

Energy Modeling

- Built initial energy model
- Load Calculation
- Helped the architect with
 - Thermal impact of the south facing greenhouse
 - Shading analysis on the green roof

Architectural Model in Revit

WE EXIST

THINGS

Lessons Learned: Modeling

Energy Modeling

- A different modeling paradigm
- Thermal zones vs. physical spaces
- Simpler model
 - Envelope Geometry
 - Bound spaces
 - Architectural features may be ignored
 - Column enclosure, closets, open alcoves

Greenhouse was broken up into three levels to simulate thermal impact of vertical displacement

S409: BIM for Energy Modeling, Lifecycle Energy Usage & Cost Analysis

Lessons Learned-IES

Pros

- Friendly interface
 - Spatial model based, Templates, Groups
- Iterative analysis
 - Easy to run analysis, once model is set up
- Comprehensive, one-platform analysis
 - Architectural features, site orientation
- Powerful
 - Allows for accurate simulation of thermal systems
- Cons
 - Not fully compliant with Revit or other modeling tool
 - gbXML export not seamless
 - Does not communicate with other modeling softwares
 - Does not support multiple users

Lessons Learned

- Energy model is different from architectural model
 - Planning and pre-processing
- Reassign Material
 - Material assignment in Revit/SketchUp not preserved in IES/Ecotect
 - Templates (IES) help reduce the rework-Planning
- Limited interoperability w/other softwares

Goal

- Evaluate IES for energy analysis
- Calibrate using utility bills
 - Energy consumption for one year (2007) documented
- Revit-to-IES import

- 50,000 sft, 2 story office building
- C&S Silver, CI Gold certified, EB Silver

Information Input

- Site Location and Orientation
- HVAC Systems
- Building Materials
- Operation Schedules
- Function/ Use

Site Location

IES Virtual Environment [APLocate] - [DPR-ABD TI] File Options Help Image: State Data Design Weather Data D	Weather data for typical year
Location Data: Location: Sacramento, California Latitude (*): 38.52 N Longitude (*): 121.50 W Altitude (tt): 26.2' Time zone (hours ahead of GMT): -8 Daylight saving time: Time adjustment (hours): 1 From: April Through: October Adjustment for other months: 0	> Site Location
Site Data: Ground reflectance: 0.20 more info Terrain type: Suburbs v Wind exposure (CIBSE Heating Loads): Normal v	Surrounding Impacts

HVAC Systems

System type	Default? System name		21 J	
Generic	Main system		Add	
4	AC01+Furnace		Demorra	TT 1 C• 1
	ACU2, ACU3 ACU4		Kelliove	User defined
	HCOT /			
				System Type
UK NCM system type	Dual-duct VAV	UK NCM system wizard	Domestic Hot Water	
Apache System				
Name	AC01+F-1	Generic	×	
Heating System				
Generator (eg boiler) F	Fuel Natural gas 🗸 Generator se	asonal efficiency 0.8000 Generator siz	e 0.000 kBtu/h	Heating
	,	erv efficiency 0.7317 SCoP	0.5854	
	К. И		aller Daalling	
vent, heat recovery er	rrectiveness 0.00000 Heat recover	y return air temp 72.00 % CHP 1 D		
Cooling System				
Cooling mechanism				
Conorator (og chillor) F		acception FED 2 0000 Conservator dia	a 1292 921 LPhu/b	
				Cooling
Heat rejection pump &	tan power 10.0000 % Cooling delive	ery efficiency 0.4935 SSEER	1.2916	00011110
Auxiliary energy (fans, p	umps & controls)			
Auxiliary energy value	4.46324 Btu/h·ft ² equivalent to	14.52771 Btu/ft ² y based on 3255 hours sy	stem operation	
Outside air supply ('syste	em air supply' in Vista)			
Cupply condition	[Televel et	Maximum Flau	uvaka Eccational afea	
		Plaxingin nov	vide jodovistv cilli	
Cooling air supply sizing				Fans, Pumps
Air supply temperature	e difference (0 for no sizing) 20.000 °F			÷
Auxiliary mechanical vent	tilation (set on Air Exchange tab)			
	a succession was an entered to the second second			

Ipaque Construc	tions Glazed Constructions	C P	0	1.1.0	
C Roofs	lings/Floors	Ground/Exposed Floors	e	Internal Partitions External Walls	
ID	Description		CIBSE U-value Btu/h-ft ^{e,} *F	EN-ISO U-value Btu/h-ft ^{g.} *F	
STD_WAL2	standard wall construction (2007	0.0614	0.0616		
STEELP	sheet steel	sheet steel			
ALUMP	sheet aluminium		0.9945	1.0359	
STD_WAL1	DPR External Wall		0.0479	0.0480	
W24	Type 1- Brick/block cavity wall		0.0613	0.0615	
W25	Type 2 - Metal clad wall		0.0614	0.0616	
11/26	Type 2 Glass elad wall		0.0610	0.0011	
W27	Type 4 - Stone clad wall		0.0609	0.0611	
TYP10000	Type 1- Brick/block cavity wall		0.0613	0.0615	
WALL	External Wall		0.4012	0.4077 🗸 🗸	

Building Envelope Material

User defined material assembly

WE EXIST

TO BUILD

GREAT

	Туре	Gain Reference	Maximum Sensible	Maximum Latent G	Occupancy	Max Power C	Radia
Space Ucare			Sp	асе Туре			
<u>space usage</u>	Fluorescent Lighting	General Office	1.115 W/fe	-		1.115 W/f€	0.45
	People	General Office	307.093 Btu/htper:	204.728 Btu/h-per:	150.695 l₽/p		
	Computers	Meeling Room	0.465 W/18	*	-	0.465 W/ft²	0.20
	Fluorescent Lighting	Meeling Room	1.115 W/fP		-	1.115 W/ft²	0.45
	People	Meeling Room	307.093 Btu/h-per:	204.728 Btu/h-per:	75.347 ft/pe		
	Computers	Call Centre	1.858 W/fՔ		-	1.858 W/ft²	0.20
Standard Internal	Fluorescent Lighting	Call Centre	0.743 W/fP		-	0.743 W/ft²	0.45
Cain Library	People	Call Centre	307.093 Btu/h-per:	204.728 Btu/h-per:	75.347 ff/pe		
Gain Library	Computers	Computer Room	50.000 W7f₽		-	50.000 W/fP	0.20
	+ Add Internal Ga	n - Remove	e Internal Gain				

Functions / Usage

– Internal Gains

	Туре	Gain Reference	Maximum Sensible	Maximum Latent G	Occupancy	Max Power C	Radiant Fractic	Fuel	Varia
	Fluorescent Lighting	General Office	1.115 W/fe			1.115 W/ft⁰	0.45	Electricity	Light
Ĩ	People	General Office	307.093 Btu/h-per:	204.728 Btu/h-per:	150.695 l₽/p			-	DPR
Î	Computers	Meeling Room	0.465 W/fe			0.465 W/ft [≥]	0.20	Electricity	Equi
	Fluorescent Lighting	Meeling Room	1.115 W/fe			1.115 W/f€	0.45	Electricity	Light
	People	Meeling Room	307.093 Btu/h-per:	204.728 Btu/h-per:	75.347 ff/pe	(<u>.</u>)	*	-	Occu
	Computers	Call Centre	1.858 W/fe			1.858 W/ft [₽]	0.20	Electricity	Equi
Ĩ	Fluorescent Lighting	Call Centre	0.743 W/fe			0.743 W/fe	0.45	Electricity	Light
Ě	People	Call Centre	307.093 Btu/h-per:	204.728 Btu/h-per:	75.347 ff/pe		*	38	Occu
	Computers	Computer Room	50.000 W/fe	m		50.000 W/fe	0.20	Electricity	on c

Gain Type

Space Type

Occupancy Schedules / Profiles

S409: BIM for Energy Modeling, Lifecycle Energy Usage & Cost Analysis

DPR Sacramento Energy Analysis Results

Heating and Cooling System CO₂ Emissions

Energy Usage by Fuel-Natural Gas

Energy Type	Model Value	Actual Value	% Difference
Natural Gas	4,297	4,310	0.3%
Electricity	634,140	572,760	-10.7%

WE EXIST

TO BUILD

GREAT

THINGS

Energy Usage by Fuel-Electricity

Energy Type	Model Value	Actual Value	% Difference
Natural Gas	4,297	4,310	0.3%
Electricity	634,140	572,760	-10.7%

Sustainable, Green and High Performance Solutions for the Built Environment

S409: BIM for Energy Modeling, Lifecycle Energy Usage & Cost Analysis

How good are the results?

- Comparing to only one year data
- Natural gas for heating: metered
- The model did not include
 - Control efficiencies
 - Daylight sensor controlled dimmers

Energy Type	Model Value	Actual Value	% Difference
Natural Gas	4,297	4,310	0.3%
Electricity	634,140	572,760	-10.7%

Solar Shading Device Analysis

% Area of Direct Solar Incidence

Month	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00
Jan	l II	0.0	0.0	59.0	53.1	50.9	69.6	82.4	87.6	92.9	93.7	1	
Feb	i İİ	0.0	0.0	100.0	57.6	53.2	51.1	68.1	82.6	88.6	94.8	1	
Mar	0.0	0.0	0.0	0.0	66.0	56.6	53.1	51.1	68.3	83.3	90.2	96.1	
Apr	0.0	0.0	0.0	0.0	100.0	62.2	56.2	53.2	51.2	66.5	83.8	92.5	
May	0.0	0.0	0.0	0.0	100.0	72.3	60.0	55.7	53.1	51.3	66.7	85.1	97.4
Jun	0.0	0.0	0.0	0.0	0.0	100.0	63.5	57.7	54.6	52.5	50.8	78.7	91.0
Jul	0.0	0.0	0.0	0.0	0.0	100.0	62.9	57.2	54.2	52.2	50.5	80.4	91.9
Aug	0.0	0.0	0.0	0.0	100.0	66.8	58.2	54.5	52.2	50.5	79.7	88.5	1
Sep	0.0	0.0	0.0	100.0	67.6	57.4	53.7	51.5	60.9	81.9	89.3	96.9	
Oct	0.0	0.0	0.0	69.2	56.6	52.9	50.9	70.9	83.5	89.7	96.5		
Nov	0.0	0.0	100.0	57.2	52.7	50.7	72.7	83.3	88.6	94.2	1	1	
Dec		0.0	84.7	55.2	51.8	56.6	79.7	84.9	89.8	95.1			
Month	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00
Jan	8	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
Feb		0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	-	
Mar	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Apr	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
May	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Jun	0.0	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Jul	0.0	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Aug	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Sep	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Oct	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
Nov	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1		
Dec		0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0			214

With Shading 48.17%

Without Shading 67.12%

Sustainable & Smart

ecobuild

S409: BIM for Energy Modeling, Lifecycle Energy Usage & Cost Analysis

Lessons Learned: Modeling

2D DXF

Plus

- Uses 2D CAD drawings, no 3D model

Minus

- Only "cubes"
- Pre-processing: Centerline drawings

Best Application

- Simple geometry
- Less variation in elevation
- Many rooms

DPR, Sacramento, CA

WE EXIST

THINGS

Energy Modeling as a Tool

- Tremendous opportunities to affect design
 - Cost effective
 - Shifts brain power
 - Better more informed solutions
 - Environmental benefits
 - Improved indoor environment
- Financial benefits
 - Upfront investment
 - Long term payback

BIM is an Enabler

BIM is an Enabler

Autodesk[.]

Company Contact Us Partners

ers Search

 \rightarrow

