BIM Best Practices: Case Studies

(Lessons Learned Leading to Best Practices)

2008 buildingSMART alliance National Conference

Tuesday, December 9, 2008
Washington, D.C.
Speakers

Grunley Construction Company, Inc.
 - Michael Tardif, Assoc. AIA, CSI, Hon. SDA

AECOM Design (formerly HSMM)
 - Michael Deming, AIA, LEED®AP

JACOBS
 - Kurt Maldovan

Ayers/Saint/Gross
 - Galen Hoeflinger, LEED®AP
 - Brian Russell
 - Jason Wilcoxon, AIA
Case Studies: Building Types

- Courthouse
- Adjudication Facility/Office Building
- Command Training Center
- Office Building
- Lab/Office Building
- University Residence Hall
Agenda

Lessons Learned:

- Aligning BIM implementation strategies with core competencies.
- Building on experience from project to project.
- Intelligent approaches to model content: taking the long view.
- Looking ahead: impact of BIM on design processes.
- Looking ahead: emerging BIM-related roles/services.
Business Model / Core Competency:

- Experts in phased renovation / modernization of occupied buildings
- High percentage of project scope / cost is HVAC, MEP, FP
- Clients place high value on:
 - historic preservation
 - quality of architectural finishes
 - minimal disturbance of occupants
- Logistical challenges typically exceed construction challenges.
Service delivery methods:

- Design-Bid-Build General Contractor
 - defined scope based on detailed design
 - accurate pricing
 - lengthy overall schedule
 - no construction expertise in design

- Design-Build
 - cost and schedule control
 - rapid mobilization
 - scope risks for logistically complex modernization projects
Service delivery methods:

- Construction Manager at Risk
 - early constructor involvement
 - scope defined early
 - accurate pricing
 - accelerated schedule
 - constructability analysis
 - construction sequence planning
 - when owner hires CM and designer simultaneously, CM at Risk is almost identical to Integrated Project Delivery.
BIM Implementation:
Grunley Construction Company

Challenges:

- Clients naturally think of “phases” in terms of area, not building systems.
- Limited access to critical spaces for building systems design prior to turnover for construction.
- Asbestos abatement must precede all construction activity, including documentation of existing conditions.
- Maintaining continuously operational life safety systems often conflicts with “logical” construction sequence for other building systems.
BIM Implementation:
Grunley Construction Company

Technology Strategy:
- Collaborate with any business partner using any technology to meet the needs of any client.
- Maintain client and project – not technology – focus.
- Acquire skill as needed through business relationships.
BIM Implementation:
Grunley Construction Company

Critical information needs:

- Detailed spatial information about existing conditions (mechanical spaces) prior to turnover for construction.
- 3D building systems design.
- Integrated model of existing conditions and proposed new conditions.
- Construction sequence planning and analysis (communication) – with both client and subcontractors.
- Make all design information available in field.
BIM Implementation:
Grunley Construction Company

Implementation strategy / pilot tests:

- Access previously inaccessible spaces prior to construction with 3D laser-scanning technology (Intelisum) at USSC.
- Provide existing conditions data to design team.
- Use data for manual construction sequence and pre-fabrication planning.
- Model construction sequence.
- Develop design-to-fabrication capability.
- Deploy tablet-PC based field ops technology (Vela Systems).
BIM Implementation:
Grunley Construction Company

Case Study: Typical Existing Condition
BIM Implementation:
Grunley Construction Company

Case Study: Typical Existing Condition
Case Study: Typical Existing Condition

A. InteliSum scanners capture conduit, piping and structure.

B. All surfaces are metrically accurate.
Video: Pre-fabricated Bridge Project

- Completed project; not video animation.
- High-tolerance existing conditions documentation critical to pre-fabrication.
- Note construction sequence animation in lower-left corner; actual construction at full screen.