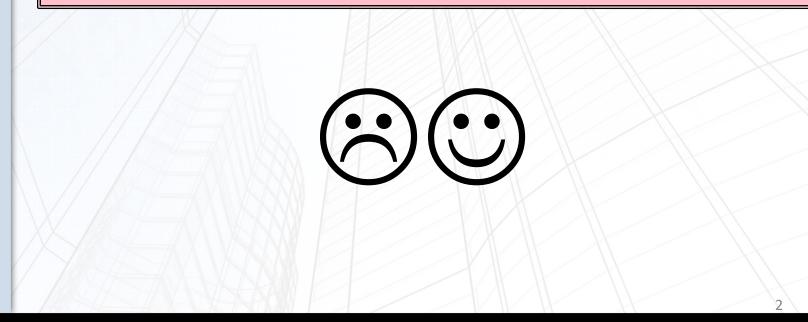


Climate Resilience: A new Paradigm for Buildings?

Mohammed M. Ettouney, Sc.D., PE, MBA, F.AEI, Dist.M.ASCE


Mohammed Ettouney, LLC - WNY, NJ

Washington, DC - January 8th, 2019

"WE DO NOT HAVE PLANET B"

French President Emmanuel Macron, Washington, DC, 2018

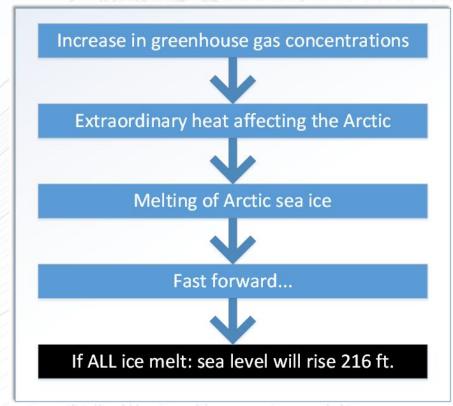
Overview

- Needed Definitions
- Climate Change (Commission anifestations (demands)
 - Preparatory background of a mate change, hazards and temporal behavior
 - Applicability to civil infrastructures
 - Usefulness of resilience vs. risk
- Objective Case Studies
 - Decision model for river flooding of non-residential buildings
 - Decision models for the 100th Meridian problem
 - Risk / Resilience multihazards assessment model for Apalachicola River, Chattahoochee River, and Flint River (ACF) estuary
 - Generic decision model for river basins
- Lessons learned

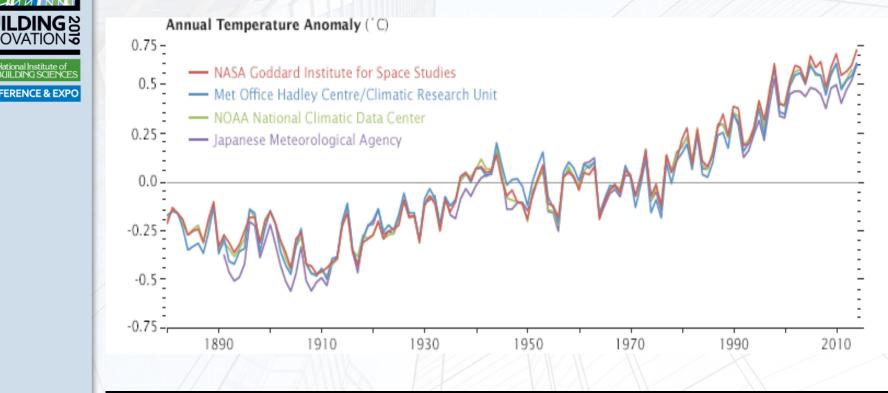
Resilience-Related Definitions

- Resilience¹
 - the ability to adapt to changing conditions and withstand and rapidly recover from disruption due to emergencies.
- Recovery¹
 - those capabilities necessary to assist communities affected by an incident to recover effectively, including, but not limited to, rebuilding infrastructure systems; providing adequate interim and long-term housing for survivors; restoring health, social, and community services; promoting economic development; and restoring natural and cultural resources.
- Climate Resilience (Proposed)?
 - the ability to adapt to changing <u>Climate</u> conditions and withstand and rapidly recover from disruption due to emergencies.

1. PPD (2011). "Presidential Policy Directive / PPd-8: National Preparedness".

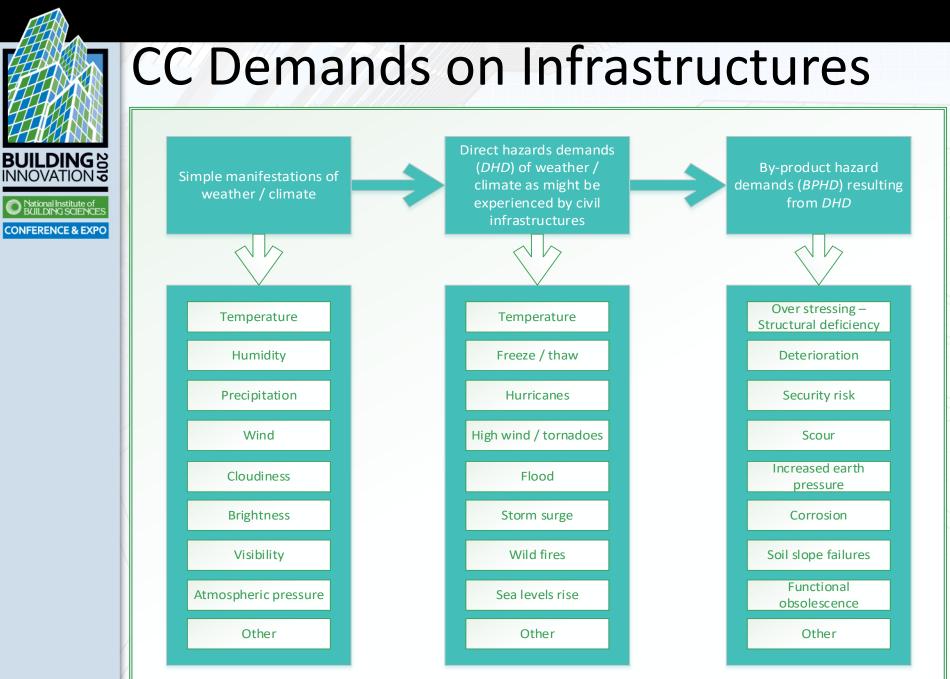


 climate change¹ "a long-term change in the earth's climate, especially a change due to an increase in the average atmospheric temperature"


BUILDING ☆

CONFERENCE & EXPO

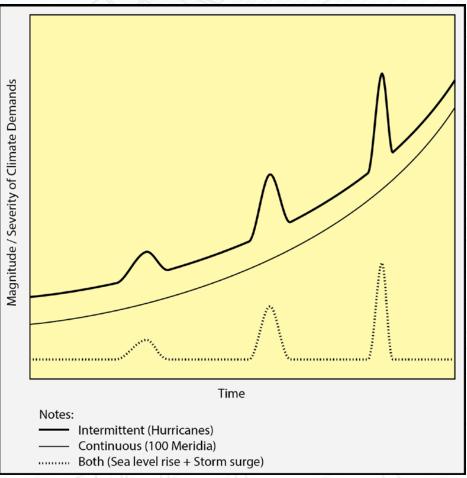
1.From: Dictionary.com



Global Warming

CONFERENCE & EXPO

Green house gases started affecting global temperatures since 1900s. The leveling between WWII and 1970 is due to the aerosol effects, which, after controlling its use, was diminished, and the green house gases effects returned to dominate global temperatures.



Temporal Types of CC Demands

How would this type distinction affect resilience applications?

Examples-Temporal CC Demands

titute of SCIENCES **1** Rising

Ŧ	CC Demand
1	Rising seas / increased coastal flooding
2	Longer and more damaging wildfire seasons
3	More destructive hurricanes
4	More frequent and intense heat waves
5	Military bases at risk
6	National landmarks at risk
7	Widespread forest death, e.g., Rocky Mountains
8	Costly and growing health impacts
9	An increase in extreme weather events
10	Heavier precipitation and flooding
11	More severe droughts in some areas
12	Increased pressure on groundwater supplies
13	Growing risks to our electricity supply
14	Changing seasons
15	Melting ice
16	Disruption to food supplies
17	Destruction of coral reefs
18	Plant and animal range shifts
19	The potential for abrupt climate change

Temporal Characteristics
Continuous / Intermittent
Intermittent
Intermittent
Intermittent
Continuous / Intermittent
Continuous / Intermittent
Intermittent
Continuous
Intermittent
Intermittent
Continuous / Intermittent
Continuous
Continuous / Intermittent
Continuous
Continuous
Continuous / Intermittent
Continuous
Continuous
Continuous

Implications of Temporal CC Demands

Implications from	CC Temporal Demand Type		
Resilience Viewpoint	Intermittent	Continuous	
Prevention	Pe	rhaps best choice	
Preparedness	Can be effective, especially using non-robustness measures	Can be effective in short term with diminishing ROI as time progress	
Protection / Robustness	Can be effective if planned properly		
Asset vs. Community treatment	Can be effective for both	Effective for assets, can be prohibitive for community	
Mitigation	See Preparedness		
Resource allocations / planning			
Response	Can be effective with increasing difficulties	Long term planning effective only short term. Increasingly becomes prohibitive then impossible	
Recovery		Not possible	

Important Lesson!

	Climate Change			
	Effective civil infrastructure paradigms	Risk		
		Always applicable to all manifestations of climate change	Resilience	
			Does not apply to all manifestations.	
			Since 'recovery' is not always possible	

Measures of Resilience

- Subjective
 - Abstract
 - High, Medium, Low
 - Continuity of Operations / Subjective
 - None, Minimum, Moderate interruptions, Severe interruptions, Stoppage
- Objective
 - Continuity of Operations / Objective
 - None, Minimum, Moderate interruptions, Severe interruptions, Stoppage
 - Time to Complete Recovery
 - Measured in objective temporal units (minutes, hours, days, months, etc.)
 - Monetary
 - Measured in monetary units
 - In such a situation, <u>Resilience becomes another manifestation of risk</u>

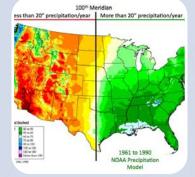
Our Objective Tool

- We use a Probabilistic Graph Network (PGN)
 - Bayesian (or Markov) network
 - Decision model

FERENCE & EXP

- PGN is eminently suitable for the study of climate change effects since
 - It is probabilistically based, from grounds up
 - The links and dependencies of different parameters are built in
 - Adding, or removing parameters from the model can be done easily
 - More importantly, the changes in different variables as resulting from changes in climate can easily be enumerated, without having to make major changes in the objective model
 - Can be integrated easy with decision models
- We will use PGN as a basis for all our case studies, with varying details

Steps for Building a PGN


Building a resilience decision model

- Define controlling issues
- Define available decisions (to business / building owner)
- Establish links
- Establish conditional probabilities
- Establish costs for different decision
- Solve the probabilistic influence diagram (ID) model
- Find optimal decision to proceed

Objective Case Studies

Decision model based on resilience of nonresidential buildings due to river flooding

Decision model for 100th Meridian problem Risk / Resilience model for ACF estuary (Multihazards problems resulting from climate change)

Generic (Risk or resilience) decision model for river basin

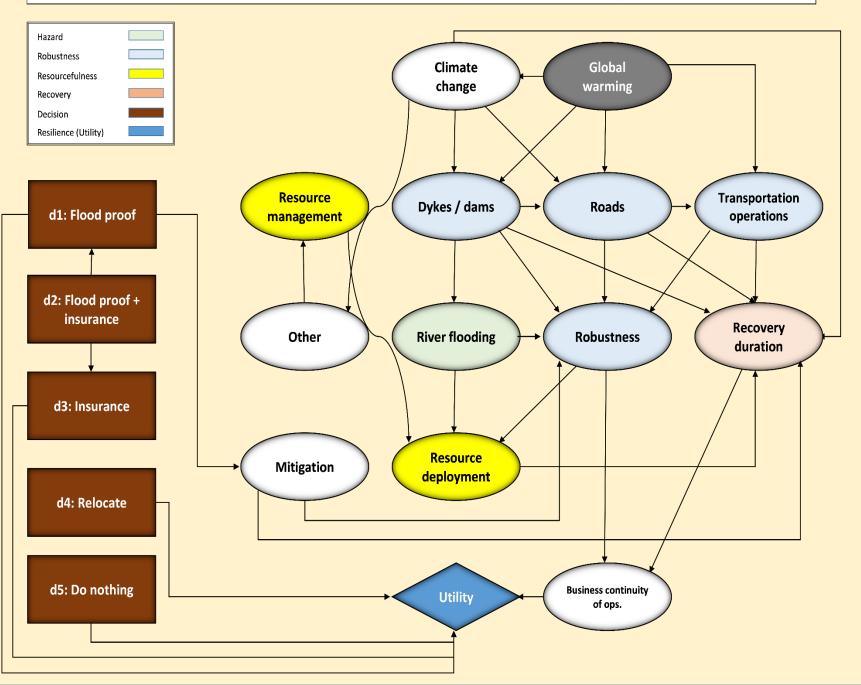
CONFERENCE & EXPO

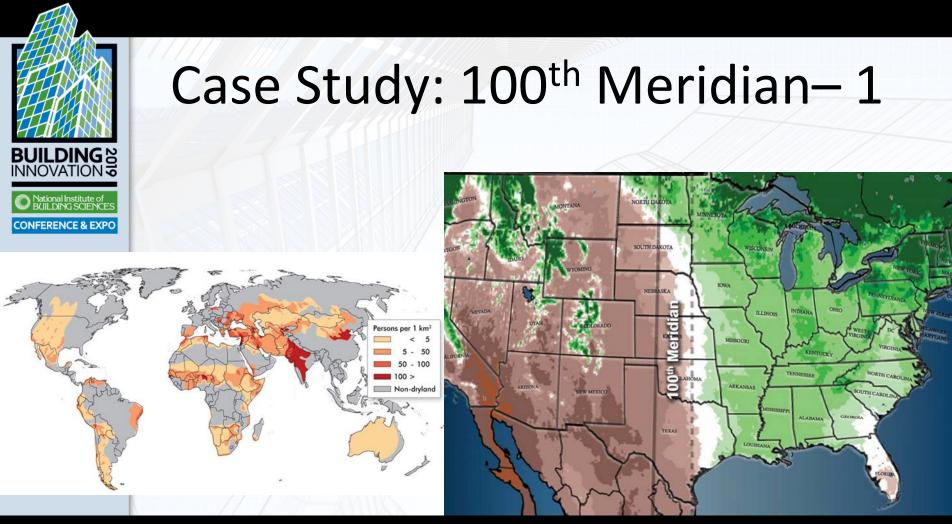
Case Study: River Flooding – 1

River Flooding – 2

- CC-related causes
 - Frequent (changing return period) and more intense precipitation
 - Higher ground water levels
 - Melting snows and ice
- Consequences for assets / communities
 - Scour
 - Failure / degradation of infrastructure / lifelines
 - Difficulties in response / recovery efforts
 - Disruptions to community operations

River Flooding Decision Paradigms (Non-Residential Buildings)


leaves	Decision Paradigm			
lssues	Resilience	Reliability	Risk	
Prevention	Partial: while resilience improve COOP, risk adds increasing economic versatility			
Preparedness	Partial: physical, COOP	Partial: physical	Partial: physical, COOP, economic	
Protection / Robustness	Yes			
Asset vs. Community treatment	Asset + community	Usually asset-based	Asset + community	
Mitigation	See Preparedness			
Resource allocations / planning	physical, COOP	No	physical, COOP, economic	
Response				
Recovery				
XX MARK // ////				



Define available decisions

- D1: Flood proof the building (includes several subdecisions)
 - Minimum code requirements (ASCE 24 / FEMA P-936 / etc.)
 - Different higher performance levels, in anticipation of more demand due to climatic change
 - Improve resource management / recovery operations / coordination
- D2: Combination of flood proofing and insurance
- D3: Insurance only
- D4: Relocate the business
- D5: Do nothing

Decision Model for Resilience to River Flooding (Non-Residential Buildings)

- -100th meridian divides the North American continent into arid western regions and humid eastern regions
- -There is an east-west gradient in aridity roughly at the 100th meridian
- -The gradient arises from atmospheric circulations and moisture transports.

100th Meridian – 2

- CC-related causes
 - Climate-related changes in wind and moisture flow in both summer and winter from Atlantic, Pacific and Gulf regions.
- Consequences for assets / communities
 - Soil moisture / ground water levels
 - West to east transition from short grass to tall grass prairie
 - Transition from coverage of developed land (east to west)
 - Lower farm productivity
 - Changes in water-resource infrastructure

100th Meridian – 3

BUILDIN INNOVATI

National Insti BUILDING SO

Physical Consequence	Socio-Economic Consequence	Civil Infrastructure Ramification	
 Lower availability of water in a natural way 	Change irrigation systems	Building different irrigation system	
	Change crops, e.g.	May require different infrastructure for: • Storing • Moving	
	Less available supply water for urban areas	 New infrastructure for Water management Efficient water usage Re-distribution of water resources Waste management 	
	Consolidations of smaller farms to larger ones	New infrastructure for larger, more consolidated production volumes	
	Avoid farming to more viable products, e.g., cattle grazing	New infrastructure for handling the differ types of products	
Higher temperature	Adjustments of all aspects of life	 Design / construction / operations of habitats 	
 Note that the above is all about Adaptation / costs Not Mitigation / recovery 		This is Risk, not Resilience!	

100th Meridian Decision Paradigms

	Issues	Decision Paradigm		
		Resilience	Reliability	Risk
	Prevention		Limited capability	
	Preparedness	Limited potential		
	Protection / Robustness	Fairly limited		
	Asset vs. Community treatment			Possible (based on
	Mitigation		No	asset, community, costs and economics)
	Resource allocations / planning			
	Response			
	Recovery	No		
				24

Objective Example:

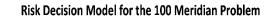
Decision Model for a Small Community

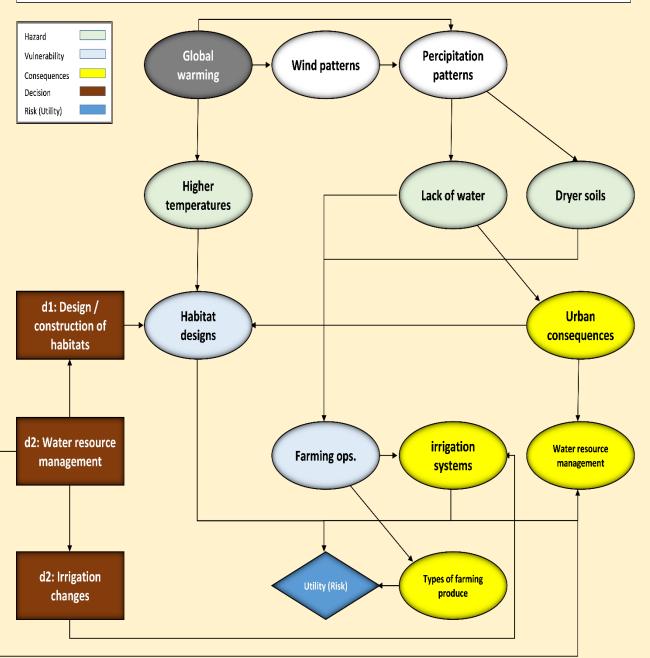
- The model should be about adaptability / costs
 - Not recovery or continuity of operations
 - Since 'recovery' is NOT feasible 😕
 - Build decision-making models
 - Find optimal decision to proceed
- Since it can't be cast as a recovery (Resilience) issue, it should be cast as a risk decision-making problem

Define available decisions (and their

costs)

Urban / Rural decisions

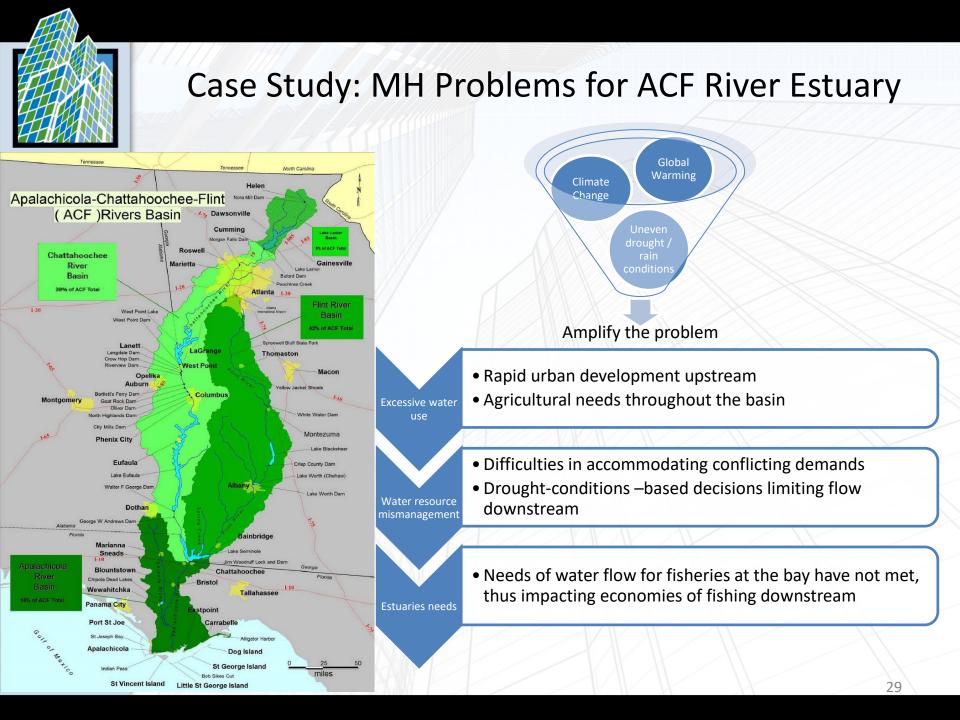

- Changes needed in design / construction to meet higher temperature demands
- Residential / business farming / roadways, etc.
- Changes needed in water resource management

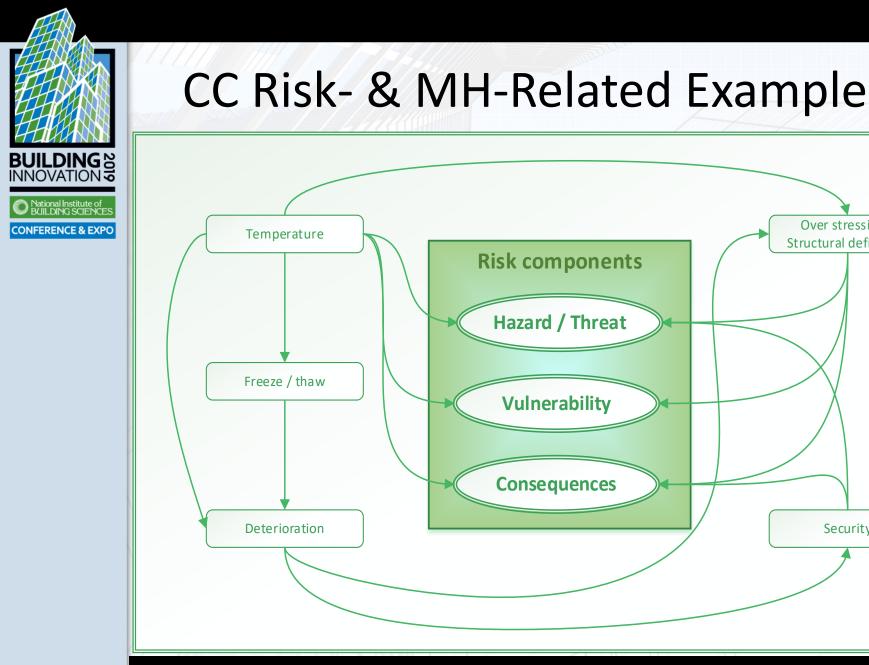

Farming operations

- Changes needed in farming production
 - Crops
 - Life stock
- Changes needed in farming irrigation systems

Unfeasible decisions

- Do nothing
- Transfer risk (insurance)

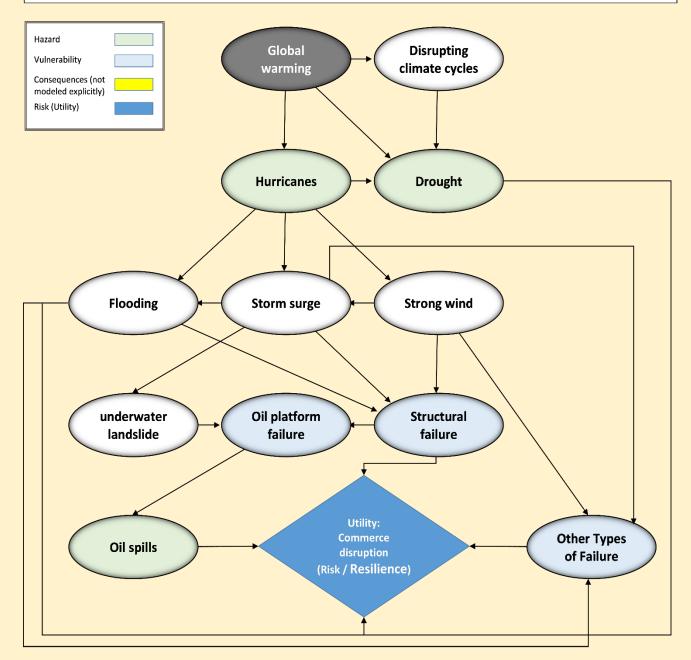

The decisions in this model are fairly general


More detailed decisions are needed for practical situations

Case Study: MH Problems for ACF River Estuary

South Atlantic

Gulf Coastal Plains and Ozarl


Note how CC FORCES Interaction of an otherwise independent hazards!

Over stressing -

Structural deficiency

Security

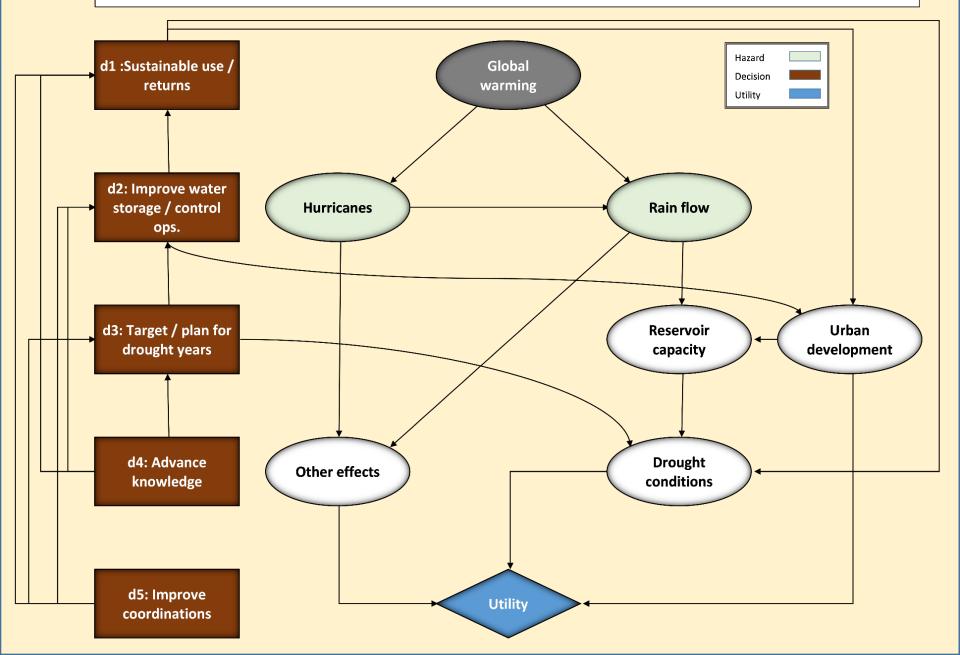
Climate Change: Risk / Resilience Models for Multihazards Demands in Community at River Estuary

This model can be adjusted to accommodate risk to the community or the resilience of the community

Decisions can easily be added to the model, as pertinent

(by 'community', we mean the community of the river estuary)

Case Study: Climate Change and River Basins


River basins can be affected greatly by climatic changes due to the multitude of hazards, stakeholders, consequences, and economies that intersect with it

A linked / network approach which accommodate most (if not all) important issues is thus needed for accurate assessment and decision making

Generic Decision Model for River Basin that is Affected by Climate Change

-To model Risk: utility would be costs

-To model Resilience: utility would be continuity of operations / time to recovery

Important lessons learned

- Climate resilience, as a response to CC, requires different treatment than resilience from non-CC –related events
- There are two distinct temporal CC-related demands
 - This will necessitate different Climate resilience management strategies
 - With the correlating objective processes, of course!
- In several situations, resilience paradigm is NOT an effective, even not possible, approach to manage climate change demands!
 - Risk and MH processes are needed.

FERENCE & EXP

- PGN modeling is convenient for modeling risk / resilience assessment as well as related decision making processes
- Introduced four climate change related case studies
 - We also showed important details of the objective modeling of those situation for assessment and decision making