

Corrosion Prevention and Control for DOD Facilities "A facilities optimization challenge"

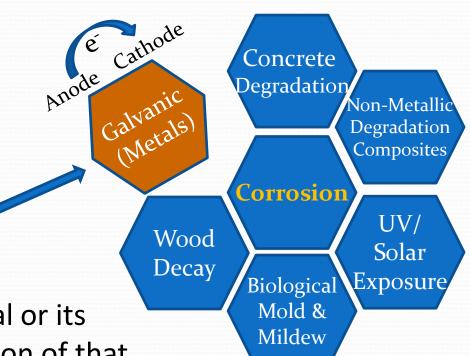
Rich Hays – Excet, Inc* Steve Geusic –Leidos* Sherri McMillion -NAVFAC

*Contract support to: OSD Corrosion Policy and Oversight

Today's Discussion

Corrosion Prevention and Control

- Background of the Corrosion Prevention and Control (CPC) effort for Facilities
- Impact of Corrosion to DoD
- Partnerships and Resources
- Focus Areas
 - Identify Areas for Improvements
 - Strategies for Optimization
 - Progress


Defining Corrosion

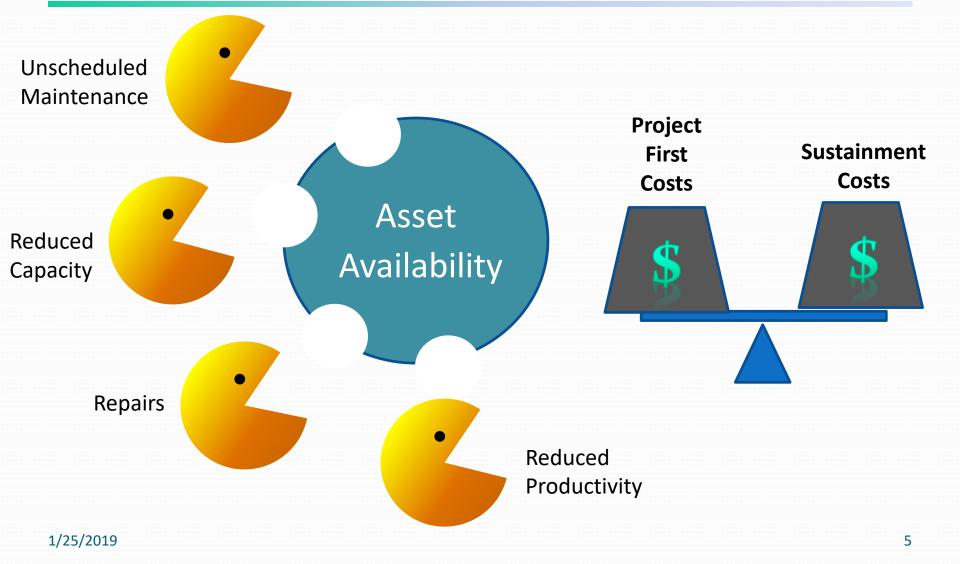
More than just "Rust"

• 10 USC Sec. 2228

The deterioration of a material or its properties because of a reaction of that material with its chemical environment.

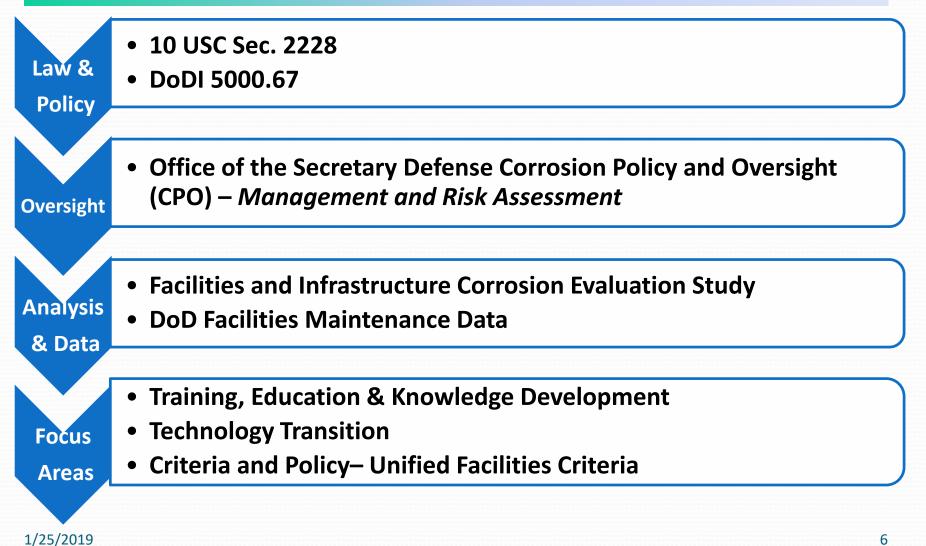
The Corrosion Challenge

DoD Facilities


(9/30/2017) 585, 816 Facilities (Buildings and structures) + Utilities, pipelines, roads, and ports at 4,775 Sites on 26.9 million acres of real property

Corrosion:

- Adds **\$2B** to annual facility sustainment costs
- Affects mission and asset readiness (availability/capacity/productivity)
- Affects safety, health, quality of life, and the environment



The Optimization Challenge

How we got here

Partnerships and Resources

Focus Areas

Training, Education & Knowledge Development

Technology Transition

Criteria & Policy

Partners

- Military Corrosion Prevention and Control Executives
- Unified Facilities Criteria Program (ESEP/CP/DWG)
- DoD Subject Matter Experts NAVFAC/USACE/AFCEC
- Defense Acquisition University
- NIBS WBDG
- Industry experts (NACE/SSPC/MPI)
- Private Architect and Engineering Consultants

Steve Geusic

Leidos

Contract Support for OSD Corrosion Policy and Oversight

Analysis and Strategy

Partnerships and Resources

Focus Areas

WBDG – A Good Fit

Training, Education & Knowledge Development

Technology Transition

Criteria & Policy

- Facilities Knowledge Center
 - Resources Training Criteria
- Unified Facilities Criteria
 - DoD Subject Matter Experts

WBDG Reach

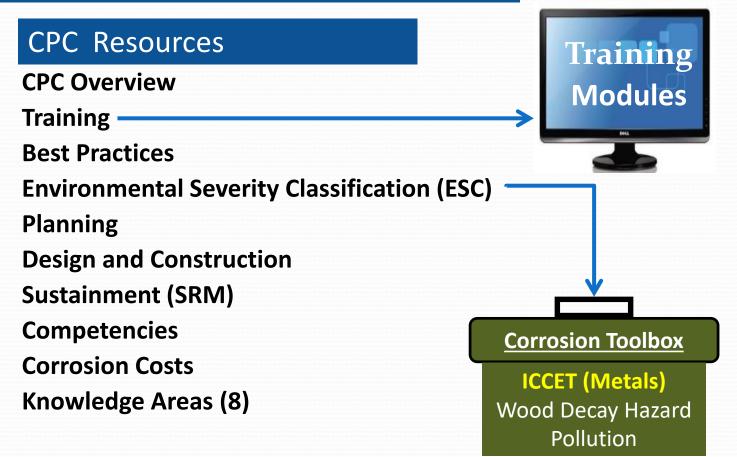
- Government
- Industry
- Private Architects and Engineers
- Standards Orgs

Focus Area

Training, Education & Knowledge Development

Training, Education & Knowledge Development

Areas of Improvement


- Access to CPC knowledge across
 Facilities Life Cycle
- Develop Training opportunities and Competencies

Corrosion Prevention and Control (CPC) Source

CPC Source Page

Corrosion Prevention and Control Source

CPC Knowledge Areas

Knowledge Areas (Current)

Cathodic Protection Corrosion Science Doors Fencing Paints and Coatings Pavements Utilities and Buried Structures Waterfront and Coastal Structures

Planned Knowledge Areas

Drydocks, Marine Railways HVAC Systems Exterior Structures Concrete Mold, Mildew, Moisture Plants (Boiler, Water, Wastewater) Weapons Systems Support Integrated Logistics Support Tropical Engineering Content

CPC Training Modules

Length - (1 hour) Voice over/transitions/test Qualifies for Professional Development Hours (PDH) Leveraging WBDG training courses with DAU

WBDG Available

- Corrosion Fundamentals
- Cathodic Protection Basics
- CPC for Utilities and Buried Structures
- Waterfront and Coastal Structures

On Deck

- Coatings Fundamentals (3 Modules)
- CPC Facilities Lifecycle (Design/Construction/Sustainment)
- Fuel Utilities and Storage Tanks
- HVAC Systems/Building Envelope 1/25/2019

Focus Area

Technology Transfer

Technology Projects - Demonstration and Validation Phase (6.4)

Areas of Improvement

- Greater focus on CPC technologies
- Better transition of technologies to criteria and DoD projects

Outcomes: Improved process (better communication, risk analysis at validation, and development of an integration plan)

Technology Transfer

Case Study

Polysulfide Modified Novolac Epoxy Low VOC Coating for Interior Welded Steel POL Tanks

 Goal - Develop / evaluate Low VOC, easily repaired / maintained alternative for interior welded steel tanks for POL

Demonstration/Application

- Tested at 5 sites
- 100% solids –no VOC concerns
- 2 coats applied Compared to traditional 3 coat epoxy systems

Technology Transfer

Results and Validation

Results

- Durability Greater abrasion and impact resistance
- Adhesion 2x greater (+2000 psi vs 800 to 1000 psi) helps reduce under film corrosion
- Polysulfide acts as "ball bearings"
 - Elongation 5x greater than typical epoxy
 - Flexibility much greater than typical epoxy
- Lower porosity reduced moisture vapor transmission
- Bridges Cracks and pinholes
- Higher water contact angle therefor easier to clean (greater slickness)

Technology Transfer

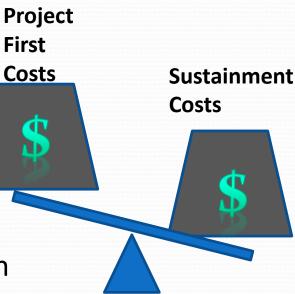
Benefits and Integration

Benefits

- Better chemical and fuel resistance
- Longer Service Life 50 years vs. 20 years
- Easier to maintain and clean
- Costs
 - Higher material costs
 - Reduced application cost 2 vs. 3 coats
 - Lower life cycle costs

Integration and Impact

- UFGS 09 97 13.15 "Low VOC Polysulfide Interior Coating of Welded Steel Petroleum Fuel Tanks"
- 1540 Welded Steel tanks DoD wide
- Can be applied to concrete tanks with an additional primer sealer


Focus Area

Criteria

Extreme Option: Require the use of the most corrosion resistant materials and coatings for all components and systems at all DoD locations.

Areas of Analysis and Optimization

- Systems and components that have high sustainment requirements
- Environmental severity effects (installation location)
- CPC awareness and enforceability in design and construction

Criteria CPC Gaps

Areas of Analysis and Optimization

High Sustainment Components and Systems

- DoD Maintenance Data Corrosion related sustainment costs
- By system (Doors, Windows, HVAC, etc.)
- By location (installation)

Environmental Severity effects

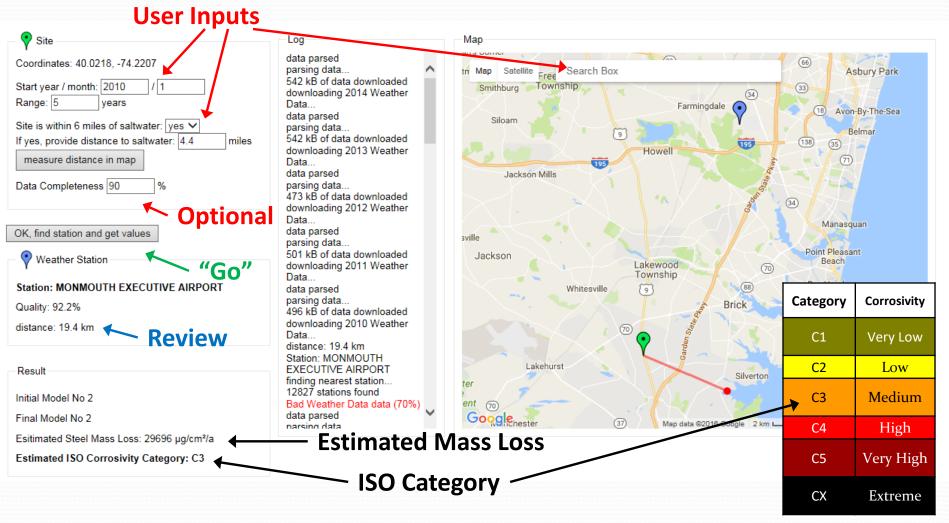
- There are increase costs associated with severe environments
- Need better integration of environmental severity in UFC and UFGS

CPC awareness and enforceability

- How is CPC communicated to designers and contractors
- Project acquisition strategy Design-Build
- Guide Specifications (UFGS) How is enhanced CPC requirements triggered

Corrosion Toolbox – ICCET Environmental Severity Development

ISO Corrosivity Categories:


Estimates ISO 9223 corrosion categories *For metals

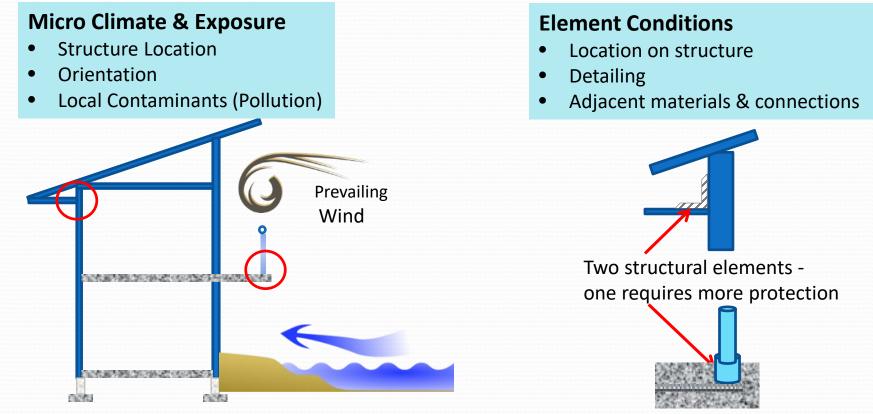
Algorithm

- Mass loss data of metal coupons at DoD installations
- NOAA ISD-Lite database (Hourly Temperature, Relative Humidity/Dew Point)
- Three equations based on distance to salt water
 - Less than 1 mile
 - 1 mile to 6 mile
 - Greater than 6 miles

→	Category	Corrosivity
	C1	Very Low
	C2	Low
	C3	Medium
	C4	High
ndex (Scheffer):	C5	Very High
aug	CX	Extreme

Corrosion Toolbox – ICCET Environmental Severity Classification

Environmental Severity Classification


UFC 1-200-01 20 June 2016 Change 2, 01 Nov 2018 Table B-1 ESC for US, Its Territories and Possessions

State/Territories/Possessions	Installation Master Name	ESC*
Alabama	Anniston AR Depot	C31
	Fort Mcclellan	C31
	Fort Rucker	C3 ¹
	Maxwell AF Base	C3 ¹
	Redstone Arsenal	C3 ¹
	Alabama National Guard	C3 ¹
	Alabama Reserves	C31
Alaska	Clear AF Station	C21
	Eielson AF Base	C21
	Fort Greely	C21
	Fort Wainwright	C21
	Alaska National Guard	C4 ³
	Alaska Reserves	C4 ³
	Joint Base Elmendorf-Richardson	C3 ³
	Naf Adak Ak	C5 ³

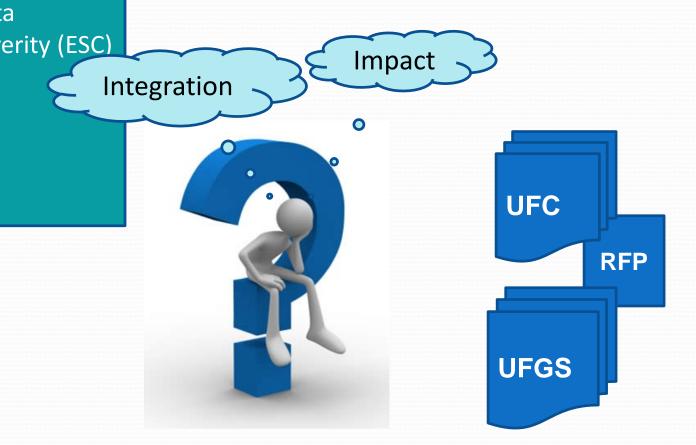
ESC - "Just the Beginning"

ESC alone cannot always correctly define the final corrosive condition:

Sherri McMillion

Naval Facilities Engineering Command, Atlantic

Application:


Design and Construction Criteria

Criteria Strategy

Gaps and Data

- Corrosion Cost Data
- Environmental Severity (ESC)
- CPC Criteria
 - Awareness
 - Requirements
 - Triggers

Facility Corrosion Cost Drivers

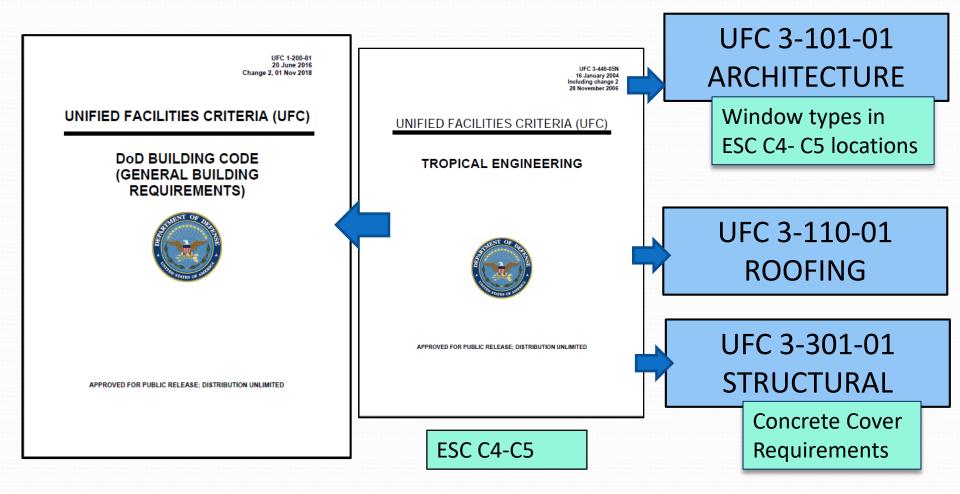
Building Envelope

- Doors/frames/hardware #1
- Windows/frames and storefronts
- Roofing
- Gutters and downspouts
- Metal Building systems

Miscellaneous

- Stairways
- Fencing
- Exterior railing
- Wastewater plants

Mechanical


- HVAC systems
- Plumbing (piping and fixtures)
- Water heaters
- Boilers

Electrical

- Panels and breakers
- Transformers
- Lighting fixtures

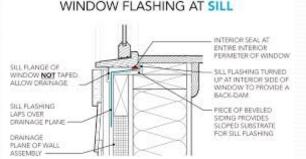
Transition into Design

Discipline Design UFCs

- Defines Corrosion
- Design for ESC at the project location:
 - UFC 1-200-01 Appendix B with ESC for each DoD Installation
 - ESC C3 -C5 require higher level of CPC in UFGS
- Applies ESC factors to Interior locations:
 - Bathrooms and locker rooms
 - Interior locations exposed to exterior or unconditioned
- Defines humid locations as ASHRAE 90.1 01A, 1A, 2A, 3A, 3C, 4C, and 5C

UFC 1-200-01 Appendix B: ESC

UFC 1-200-01 20 June 2016 Change 2, 01 Nov 2018

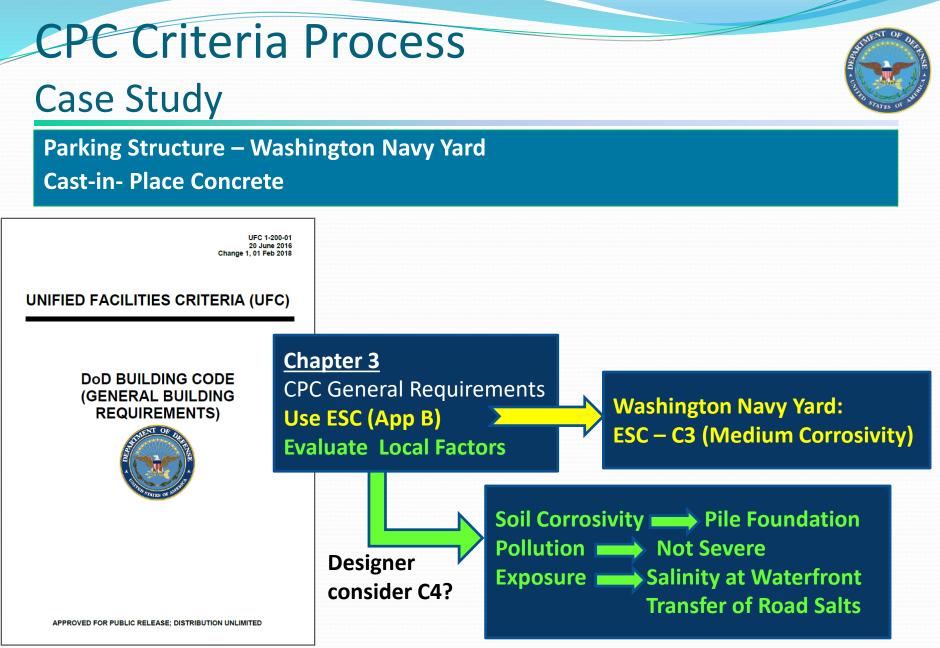

UNITED STATES, ITS TERRITORIES AND POSSESSIONS				
State/Territories/Possessions	Installation Master Name	ESC*		
Colorado	Pueblo Chemical Depot	C21		
	Rocky Mountain Arsenal	C21		
	Schriever AF Base	C21		
	USAF Academy	C21		
Connecticut	Connecticut National Guard	C31		
	Connecticut Reserves	C31		
	Nwirp Bloomfield Ct	C31		
	Stratford AR Engine Plant	C3 ²		
	Subase New London Ct	C4 ³		
Delaware	Delaware National Guard	C31		
	Delaware Reserves	C3 ²		
	Dover AF Base	C3 ²		
District of Columbia	Naval Station Washington Navy Yard	C33		
	Joint Base Anacostia-Bolling	C31		
	Marbks Washington Dc	C31		
	District Of Columbia National Guard	C31		
	Washington DC Reserves	C31		
Florida	Florida National Guard	C5 ³		

UFC 1-200-01: Overall Design

Drawing Details:

- Geometries preventing collection of debris and allowing water to drain
- Dissimilar metal isolation
- Material Requirements:
 - Coatings:
 - Galvanized steel with an industrial coating.
 - Aluminum with an industrial protective coating or heavy duty anodized coating.
 - Type 316L stainless steel or duplex stainless steels.

Transition into UFGS

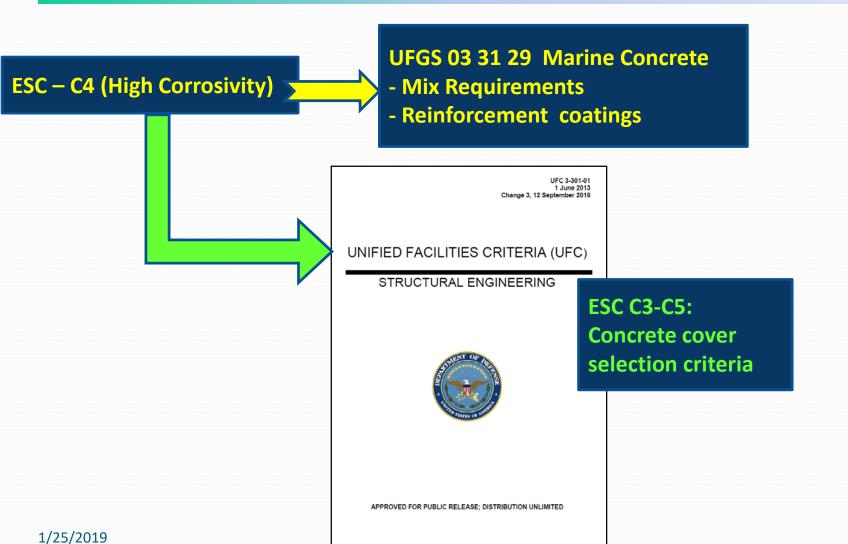

Applied ESC and other factors:

- Updated 35 UFGS sections NOV 2018
- Selection of systems, components, materials

Example: UFGS 08 71 00 DOOR HARDWARE

2.5 FINISHES

NOTE: Use stainless steel in bathroom and toilet locations and in project locations with Environmental Severity Classifications (ESC) of C3 through C5. See UFC 1-200-01 for determination of ESC for project locations.



1/25/2019

CPC Criteria Process

Case Study

33

ATTENDE OF DETERMENT

Next Steps:

- Transition Mechanical and Electrical Tropical Engineering UFC Requirements
- Prioritize UFCs and UFGSs to fully incorporate CPC requirements:
 - Doors and Windows
 - Concrete
 - Metal Buildings
- Perform Life-Cycle-Cost and cost impact analysis
- Incorporate feedback through Criteria Change Request (CCR) process

Criteria Feedback - CCR

UNIFIED FACILITIES GUIDE SPECIFICATIONS (UFGS)

UFGS Master Updated August 17, 2018; Posted August 23, 2018

Unified Facilities Guide Specifications (UFGS) are a joint effort of the U.S. Army Corps of Engineers (USACE), the Naval Facilities Engineering Command (NAVFAC), the Air Force Civil Engineer Center (HQ AFCEC) and the National Aeronautics and Space Administration (NASA). UFGS are for use in specifying construction for the military services. Read More

Administration (PASA), of OS are for use in specifying construction for the minitary services. Rearmone			
DIVISION 03 - CONCRETE	08-01-2018	₫ ZIP	
UFGS 03 01 00 Rehabilitation of Concrete	02-01-2018	🔁 PDF 💩 ZIP	CCR
UFGS 03 11 13.00 10 Structural Cast-In-Place Concrete Forming	05-01-2014	🔁 PDF 🖓 ZIP	CCR
UFGS 03 11 19.00 10 Insulating Concrete Forming	05-01-2014	🔁 PDF 💩 ZIP	CCR
UFGS 03 15 00.00 10 Concrete Accessories	05-01-2014	🔁 PDF 💩 ZIP	CCR
UFGS 03 20 00.00 10 Concrete Reinforcing	05-01-2014	🔁 PDF 💩 ZIP	CCR
UFGS 03 23 00 Stressed Tendon Reinforcing	05-01-2016	🔁 PDF 💩 ZIP	CCR
UFGS 03 30 00 Cast-In-Place Concrete	05-01-2014	🔁 PDF 💩 ZIP	CCR
UFGS 03 30 00.00 10 Cast-In-Place Concrete	05-01-2014	🔁 PDF 💩 ZIP	CCR

Criteria - Lessons Learned

ESC's

- General Location
- Atmospheric
- Applies mostly to Metals

Designer Responsibilities

- Micro Climate
- Exposure
- Element Conditions and Detailing

Other Environmental Factors and Materials

- Better quantify and classify corrosive environmental factors such as UV, soil contaminants, insects, and pollution
- Application to non-metals Timber, composites, concrete, etc.

A PATES OF JUNE

Way Forward

- Corrosion significantly impacts costs, availability, and safety of DoD facilities
- DoD is taking a comprehensive approach to reduce these impacts:
 - Policy and guidance
 - Training and knowledge deployment
 - Technology and tools
 - Criteria and specifications
- Goal is to achieve required availability and safety with optimal first cost and sustainment investments

Thoughts?

Questions?

